
GRADESTA
level 0 cap‘n proto schema

27.10.2021

© Timothy Hobbs 2021
LGPL v3

hobbs.cz
 gradesta.org

Level 0

This is level 0 of the Gradesta protocol

The purpose of level 0 is to provide the absolute minimal required
functionality.

If you want to add new functionality, add it to level 1.

While this source file is licensed under the LGPLv3, You
should consider this document to be read only. Changes
to level 0 of the protocol are not welcome.

The reason for this is not animosity towards others, but
due to a desire to maintain compatibility as widely as
possible.

Message

ForClient
Vertex

VertexState
UpdateStatus

ForService
Address

Shared
DataUpdate
PortUpdate

EncryptionUpdate
VertexMessage

Time

@0xa838a0f012aecc79;

struct Message {
 forClient @0 :ForClient;
 forService @1 :ForService;
}

struct ForClient {
 vertexMessages @0 :List(VertexMessage);
 vertexes @1 :List(Vertex);
 vertexStates @2 :List(VertexState);
 updateStatuses @3 :List(UpdateStatus);
 portUpdates @4 :List(PortUpdate);
 dataUpdates @5 :List(DataUpdate);
 encryptionUpdates @6 :List(EncryptionUpdate);
 timestamp @7 :List(Time);
 Timestamp is sent as a list, but it is really just an optional
value.
}

struct ForService {
 vertexMessages @0 :List(VertexMessage);
 portUpdates @1 :List(PortUpdate);
 dataUpdates @2 :List(DataUpdate);
 encryptionUpdates @3 :List(EncryptionUpdate);
 select @4 :List(Address);
 Instance ids
 deselect @5 :List(Int64);
 timestamp @6 :List(Time);
}

struct Address

Addresses are strings with no maximum length. They can
include utf-8 emoji's. They have five or six segments.
 There form is:

gradesta://<host>(:port)/<locale>/<service name>/<service
specific vertex address>?<query>#<state to be passed to view>

 OR

<path to unix socket>:<locale>/<service name>/<service
specific vertex addresss>?<query>#<state to be passed to view>

the anchor after the # is cut off by the client and not actually
sent to the service. GUIs should default to url DECODING the
strings so instead of showing URL encoded text. Each
segment may contain any valid utf-8 character except
newline, `/` and `:`. The service specific address may
contain `/`. If it does contain `/` then prefix substrings of the
address when using `/` as a separator must also be valid
addresses. That means if
 `gradesta://example.com/en-us/foo/bar/baz/baf`
 is a valid address:
`gradesta://example.com/en-us/foo/bar/baz` and
`gradesta://example.com/en-us/foo/bar`
must also be valid addresses.
 Addresses should be urlencoded when copied to the
clipboard but should not be urlencoded on the wire.

PS: Of course the host/path segment must be a valid
hostname or path and hostnames typically don't
contain emojis ;)

PPS: The service name `meta` is reserved for level1
of the protocol.

struct Address {
 socket @0 :Text;
 socket is either gradesta://example.com:<port-number>
 or gradesta://example.com
 or /path/to/unix/socket
 it can also be `^` if the socket is a standard local gradesta
manager service
 locale @1 :Text
 serviceName @2 :Text;
 vertexPath @3 :List(Text);
 Names of quargs
 qargs @4 :List(Text);
 Values of quargs
 qargs and qvals can be zipped together to get the
pairs you want.
 qvals @5 :List(Text);
 The id of the identity. Identities are gnupg derived and are
specified at level1 of the protocol
 identity @6 :UInt64;
}

Shared messages

Messages are passed between the client and the vertex. These are
arbitrary data and are not specified at this level of the protocol.
This level of the protocol only specifies the routing of messages to
vertexes.
struct VertexMessage {
 vertexId @0 :UInt64;
 data @1 :Data;
}

Heartbeating
We copy, and use, websocket's PingPong method for heart
beating. This means that the service sends a ping message when
it starts to feal like the client might no longer be active. If it does
not get a Pong or other response within a given short amount of
time the service will free the resources associated with that
client.In our case a Ping using websockets is a literall ping.
Otherwise, any time we get an otherwise empty ForClient message
that has a timestamp set, this is considered a Ping end the client
should respond immediately with a Pong (an empty ForService
message with the timestamp set)

struct Time {
 Actual number of seconds since 00:00:00 1.1.1970 None of that
leap second nonsense, we're interested in linear time.
 time_tai_secs @2 :Int64;
 Nanosecond part of time. Note, it can be quite a problem to find
the correct TAI time.
 time_tai_ns @3 :Int32;
 These fields are somewhat optional. The protocol functions
without them set but it is better to set them for better debugging
and profiling.
 Prefer in this order:
 1. TAI time.
 2. Linear UNIX time (no leapseconds while the program is
running)
 3. Non-linear UNIX time
}

 Updates

Updates originating from the service have negative ids,
updates origionating from the client have positive ids
struct DataUpdate {
 updateId @0 :Int64;
 vertexId @1 :UInt64;
 mime @2 :Text;
 data @3 :Data;
}

Vertexes have ports. These ports can either be connected or
disconnected.
struct PortUpdate {
 updateId @0 :Int64;
Vertex from wence the port connects
 vertexId @1 :UInt64;
Each port has a direction. Directions are important for walk trees
which are defined in a higher level of the API.
 direction @2 :Int64;
Ordinarilly there are only 4 directions -1, 1 (up/down), -2, and 2
(left, right), however other directions are allowed by the protocal
and may be used, for example by a version control system to link
to a previous version of a cell or by a citation system to link to a
source. In these cases it is typical to refer direction 3 to a context
menu with these choices rather than creating new ports for every
single purpose.
 connectedVertex :union {
 disconnected @3 :Void;
 closed @4 :Void;
 vertex @5 :Address;
 symlink @6 :Address;
 }
}

struct EncryptionUpdate {
 updateId @0 :Int64;
 vertexId @1 :UInt64;
Blank string for unencrypted, otherwise a list of GNUPG public keys
signed by a trusted key. Each public key is then used to encrypt a
shared private key (specific to this vertex) which is used to
encrypt all message data and vertex data. A vertex's data and
messages are considered to be end to end encrypted if the keys
Text is signed by a trusted key and the messages and data are
correctly encrypted by the secret key.
 keys @2 :Text;
}

For Client

struct Vertex {
 address @0 :Address;
 instanceId @1 :UInt64;
View is an IPFS link to javascript used for viewing and intracting
with data. This is an IPFS directory. It can also contain
documentation for the vertex's messaging API. In the future other
types of frontends besides javascript may be supported. The entry
to the javascript should be found in the path: webview/js/index.js
 view @2 :Text;
}

struct VertexState {
 instanceId @0 :UInt64;
Status is similart to in HTTP.
 200 is OK
 404 is not found
There is one special response code 222 which referes to 'phantom'
cells. Phantom cells work just like normal cells, only they don't
exist. There is no way for clients to create cells in gradesta but a
service can provide phantom cells, which can become real when
the client interacts with them.
 status @1 :UInt64;
 reaped @2 :Bool;
}

struct UpdateStatus {
 updateId @0 :UInt64;
 Status is similart to in HTTP. 200 is OK
 status @1 :UInt64;
 The address of a vertex providing an explanation
 explanation @2 :Address;
}

